
Chapter 9

Lists

Concepts:
. The list abstraction
. Singly linked lists
. Doubly linked lists
. Circular lists
. Vectors as lists

He’s makin’ a list
and checkin’ it twice!

—Haven Gillespie

IMAGINE YOU ARE TO WRITE A ROBUST PROGRAM to handle varying amounts of
data. An inventory program is a classic example. The same inventory program
might be used to keep track of either tens of items, or millions. To support such
applications, Vectors and arrays are not ideal. As they reach their capacity they
must be expanded. Either this happens manually, as with arrays, or automati-
cally, as with Vectors. In either case the penalty for growing the structure is the
same over the growth of the structure. With a Vector, for example, when the
structure must double in size, the cost of adding an element is proportional to
the size of the Vector.

In this chapter, we develop the concept of a linked list. A linked list is a
dynamic structure that grows and shrinks exactly when necessary and whose
elements may be added in constant time. There is some cost for this dynamic
behavior, however. As with Vectors and arrays, each of the elements of a linked-
list has an associated index, but the elements of many linked list implementa-
tions cannot be efficiently accessed out of order or accessed randomly. Despite
this one inefficiency, linked lists provide an important building block for the
design of many effective data structures.

An analogy for linked lists is a child’s string of snap-together beads. As we

If you have
never seen
these, visit your
niece.

grow the string of beads, we attach and detach new beads on either the front
(head) or rear (tail). Since there are two modifying operations that we can per-
form (add or remove) and two ends (at the location of the first or last element)
there are four operations that change the length of the structure at the end.

We may also wish to perform operations on the internal portion of the list.
For example, we may want to test for inclusion (Is there a red bead?) or extract
an element (Remove a red bead!). These operations require a traversal of the
linked list from one of the two ends.



180 Lists

Now, let’s see what the Java description of a list looks like:

List

public interface List<E> extends Structure<E>

{

public int size();

// post: returns number of elements in list

public boolean isEmpty();

// post: returns true iff list has no elements

public void clear();

// post: empties list

public void addFirst(E value);

// post: value is added to beginning of list

public void addLast(E value);

// post: value is added to end of list

public E getFirst();

// pre: list is not empty

// post: returns first value in list

public E getLast();

// pre: list is not empty

// post: returns last value in list

public E removeFirst();

// pre: list is not empty

// post: removes first value from list

public E removeLast();

// pre: list is not empty

// post: removes last value from list

public E remove(E value);

// post: removes and returns element equal to value

// otherwise returns null

public void add(E value);

// post: value is added to tail of list

public E remove();

// pre: list has at least one element

// post: removes last value found in list

public E get();

// pre: list has at least one element

// post: returns last value found in list



181

public boolean contains(E value);

// pre: value is not null

// post: returns true iff list contains an object equal to value

public int indexOf(E value);

// pre: value is not null

// post: returns (0-origin) index of value,

// or -1 if value is not found

public int lastIndexOf(E value);

// pre: value is not null

// post: returns (0-origin) index of value,

// or -1 if value is not found

public E get(int i);

// pre: 0 <= i < size()

// post: returns object found at that location

public E set(int i, E o);

// pre: 0 <= i < size()

// post: sets ith entry of list to value o;

// returns old value

public void add(int i, E o);

// pre: 0 <= i <= size()

// post: adds ith entry of list to value o

public E remove(int i);

// pre: 0 <= i < size()

// post: removes and returns object found at that location

public Iterator<E> iterator();

// post: returns an iterator allowing

// ordered traversal of elements in list

}

Again, because this structure is described as an interface (as opposed to a
class) Java understands this to be a contract describing the methods that are
required of lists. We might think of an interface as being a “structural precondi-
tion” describing the outward appearance of any “listlike” class. If we write our
code in terms of this interface, we may only invoke methods specified within
the contract.

Note that the List interface is an extension of the Structure interface that
we have seen earlier, in Section 1.8. Thus, every List is also a Structure—a
structure that supports operations like add and remove as well as other size-
related methods. We will see, over the course of this text, several abstract types
that may serve as Structures.

The interface, along with pre- and postconditions, makes many of the imple-
mentation-independent decisions about the semantics of associated structures.



182 Lists

When we develop specific implementations, we determine the implementation-
specific features of the structure, including its performance. When we compare
specific implementations, we compare their performance in terms of space and
time. Often, performance can be used to help us select among different imple-
mentations for a specific use.

9.1 Example: A Unique Program

As an example of how we might use lists, we write a program that writes out
the input with duplicate lines removed. The approach is to store each of the
unique lines in a structure (lines) as they are printed out. When new lines are
read in, they are compared against the existing list of unique, printed lines. If
the current line (current) is not in the list, it is added. If the current line is in
the list, it is ignored.

Unique

public static void main(String[] args)

{

// input is read from System.in

Scanner s = new Scanner(System.in);

String current; // current line

// list of unique lines

List<String> lines = new SinglyLinkedList<String>();

// read a list of possibly duplicated lines

while (s.hasNextLine()) {

current = s.nextLine();

// check to see if we need to add it

if (!lines.contains(current)) {

System.out.println(current);

lines.add(current);

}

}

}

In this example we actually construct a particular type of list, a SinglyLinked-

List. The details of that implementation, discussed in the next section, are
not important to us because lines is declared to be a generic interface, a List.
Accessing data through the lines variable, we are only allowed to invoke meth-
ods found in the List interface. On the other hand, if we are able to cast our
algorithms in terms of Lists, any implementation of a List will support our
program.

When given input

madam

I'm

Adam!

...

Adam!



9.2 Example: Free Lists 183

I'm

Ada!

...

mad

am I...

madam

the program generates the following output:

madam

I'm

Adam!

...

Ada!

mad

am I...

Because there is no practical limit (other than the amount of memory available)
on the length of a list, there is no practical limit on the size of the input that
can be fed to the program. The list interface does not provide any hint of how
the list is actually implemented, so it is difficult to estimate the performance of
the program. It is likely, however, that the contains method—which is likely
to have to consider every existing element of the list—and the add method—
which might have to pass over every element to find its correct position—will
govern the complexity of the management of this List. As we consider imple-
mentations of Lists, we should keep the performance of programs like Unique

in mind.

9.2 Example: Free Lists

In situations where a pool of resources is to be managed, it is often convenient
to allocate a large number and keep track of those that have not been allocated.
This technique is often used to allocate chunks of physical memory that might
eventually be allocated to individual applications or printers from a pool that
might be used to service a particular type of printing request.

The following application maintains rental contracts for a small parking lot.
We maintain each parking space using a simple class, Space:

ParkingLot

class Space

{ // structure describing parking space

public final static int COMPACT = 0; // small space

public final static int MINIVAN = 1; // medium space

public final static int TRUCK = 2; // large space

protected int number; // address in parking lot

protected int size; // size of space

public Space(int n, int s)

// post: construct parking space #n, size s

{



184 Lists

number = n;

size = s;

}

public boolean equals(Object other)

// pre: other is not null

// post: true iff spaces are equivalent size

{

Space that = (Space)other;

return this.size == that.size;

}

}

The lot consists of 10 spaces of various sizes: one large, six medium, and three
small. Renters may rent a space if one of appropriate size can be found on
the free list. The equals method of the Space class determines an appropriate
match. The rented list maintains Associations between names and space de-
scriptions. The following code initializes the free list so that it contains all the
parking spaces, while the rented list is initially empty:

List<Space> free = new SinglyLinkedList<Space>(); // available

List<Association<String,Space>> rented =

new SinglyLinkedList<Association<String,Space>>(); // rented spaces

for (int number = 0; number < 10; number++)

{

if (number < 3) // three small spaces

free.add(new Space(number,Space.COMPACT));

else if (number < 9) // six medium spaces

free.add(new Space(number,Space.MINIVAN));

else // one large space

free.add(new Space(number,Space.TRUCK));

}

The main loop of our program reads in commands from the keyboard—either
rent or return:

Scanner s = new Scanner(System.in);

while (s.hasNext())

{

String command = s.next(); // rent/return

...

}

System.out.println(free.size()+" slots remain available.");

Within the loop, when the rent command is entered, it is followed by the size
of the space needed and the name of the renter. This information is used to
construct a contract:

Space location;

if (command.equals("rent"))

{ // attempt to rent a parking space



9.2 Example: Free Lists 185

String size = s.next();

Space request;

if (size.equals("small"))

request = new Space(0,Space.COMPACT);

else if (size.equals("medium"))

request = new Space(0,Space.MINIVAN);

else request = new Space(0,Space.TRUCK);

// check free list for appropriate-sized space

if (free.contains(request))

{ // a space is available

location = free.remove(request);

String renter = s.next(); // to whom?

// link renter with space description

rented.add(new Association<String,Space>(renter,location));

System.out.println("Space "+location.number+" rented.");

} else {

System.out.println("No space available. Sorry.");

}

}

Notice that when the contains method is called on a List, a dummy element is
constructed to specify the type of object sought. When the dummy item is used
in the remove command, the actual item removed is returned. This allows us to
maintain a single copy of the object that describes a single parking space.

When the spaces are returned, they are returned by name. The contract is
looked up and the associated space is returned to the free list:

Space location;

if (command.equals("return")){

String renter = s.next(); // from whom?

// template for finding "rental contract"

Association<String,Space> query = new Association<String,Space>(renter);

if (rented.contains(query))

{ // contract found

Association<String,Space> contract =

rented.remove(query);

location = contract.getValue(); // where?

free.add(location); // put in free list

System.out.println("Space "+location.number+" is now free.");

} else {

System.out.println("No space rented to "+renter);

}

}

Here is a run of the program:

rent small Alice

Space 0 rented.

rent large Bob

Space 9 rented.



186 Lists

rent small Carol

Space 1 rented.

return Alice

Space 0 is now free.

return David

No space rented to David

rent small David

Space 2 rented.

rent small Eva

Space 0 rented.

quit

6 slots remain available.

Notice that when Alice’s space is returned, it is not immediately reused because
the free list contains other small, free spaces. The use of addLast instead of
addFirst (or the equivalent method, add) would change the reallocation policy
of the parking lot.

We now consider an abstract base class implementation of the List inter-
face.

9.3 Partial Implementation: Abstract Lists

Although we don’t have in mind any particular implementation, there are some
pieces of code that may be written, given the little experience we already have
with the use of Lists.

For example, we realize that it is useful to have a number of synonym meth-
ods for common operations that we perform on Lists. We have seen, for ex-
ample, that the add method is another way of indicating we want to add a new
value to one end of the List. Similarly, the parameterless remove method per-
forms a removeLast. In turn removeLast is simply a shorthand for removing
the value found at location size()-1.

AbstractList

public abstract class AbstractList<E>

extends AbstractStructure<E> implements List<E>

{

public AbstractList()

// post: does nothing

{

}

public boolean isEmpty()

// post: returns true iff list has no elements

{

return size() == 0;

}

public void addFirst(E value)

// post: value is added to beginning of list



9.3 Partial Implementation: Abstract Lists 187

{

add(0,value);

}

public void addLast(E value)

// post: value is added to end of list

{

add(size(),value);

}

public E getFirst()

// pre: list is not empty

// post: returns first value in list

{

return get(0);

}

public E getLast()

// pre: list is not empty

// post: returns last value in list

{

return get(size()-1);

}

public E removeFirst()

// pre: list is not empty

// post: removes first value from list

{

return remove(0);

}

public E removeLast()

// pre: list is not empty

// post: removes last value from list

{

return remove(size()-1);

}

public void add(E value)

// post: value is added to tail of list

{

addLast(value);

}

public E remove()

// pre: list has at least one element

// post: removes last value found in list

{

return removeLast();

}



188 Lists

public E get()

// pre: list has at least one element

// post: returns last value found in list

{

return getLast();

}

public boolean contains(E value)

// pre: value is not null

// post: returns true iff list contains an object equal to value

{

return -1 != indexOf(value);

}

}

Position-independent operations, like contains, can be written in an implemen-
tation-independent manner. To see if a value is contained in a List we could
simply determine its index with the indexOf method. If the value returned
is −1, it was not in the list, otherwise the list contains the value. This approach
to the implementation does not reduce the cost of performing the contains

operation, but it does reduce the cost of implementing the contains operation:
once the indexOf method is written, the contains method will be complete.
When we expect that there will be multiple implementations of a class, sup-
porting the implementations in the abstract base class can be cost effective. If
improvements can be made on the generic code, each implementation has the
option of providing an alternative version of the method.

Notice that we provide a parameterless constructor for AbstractList ob-
jects. Since the class is declared abstract, the constructor does not seem nec-
essary. If, however, we write an implementation that extends the AbstractList

class, the constructors for the implementation implicitly call the parameterless
constructor for the AbstractList class. That constructor would be responsible
for initializing any data associated with the AbstractList portion of the imple-
mentation. In the examples of the last chapter, we saw the AbstractGenerator

initialized the current variable. Even if there is no class-specific data—as is
true with the AbstractList class—it is good to get in the habit of writing these
simple constructors.

We now consider a number of implementations of the List type. Each of
these implementations is an extension of the AbstractList class. Some inherit
the methods provided, while others override the selected method definitions to
provide more efficient implementation.

9.4 Implementation: Singly Linked Lists

Dynamic memory is allocated using the new operator. Java programmers are
accustomed to using the new operator whenever classes or arrays are to be allo-
cated. The value returned from the new operator is a reference to the new object.



9.4 Implementation: Singly Linked Lists 189

A B

Figure 9.1 Pictures of a null reference (left) and a non-null reference to an instance
of a class (right).

Thus, whenever we declare an instance of a class, we are actually declaring a
reference to one of those objects. Assignment of references provides multiple
variables with access to a single, shared instance of an object.

An instance of a class is like a helium-filled balloon. The balloon is the object
being allocated. The string on the balloon is a convenient handle that we can
use to hold onto with a hand. Anything that holds onto the string is a reference.
Assignment of references is similar to asking another hand to “hold the balloon
I’m holding.” To not reference anything (to let go of the balloon) we can assign
the reference the value null. If nothing references the balloon, then it floats
away and we can no longer get access to the instance. When memory is not
referenced in any way, it is recycled automatically by a garbage collector.

Principle 10 When manipulating references, draw pictures.
N

NW

SW
SE

NE

W

S

E

In this text, we will draw references as arrows pointing to their respective ob-
jects (Figure 9.1). When a reference is not referencing anything, we draw it as
a dot. Since references can only be in one of two states—pointing to nothing or
pointing to an object—these are the only pictures we will ever draw.

One approach to keeping track of arbitrarily large collections of objects is to
use a singly linked list to dynamically allocate each chunk of memory “on the
fly.” As the chunks of memory are allocated, they are linked together to form First garbage,

now flies!the entire structure. This is accomplished by packaging with each user object a
reference to the next object in the chain. Thus, a list of 10 items contains 10
elements, each of which contains a value as well as another element reference.
Each element references the next, and the final element does not reference
anything: it is assigned null (see Figure 9.2). Here, an implementation of a
Node contains an additional reference, nextElement:

Node

public class Node<E>

{

protected E data; // value stored in this element

protected Node<E> nextElement; // ref to next



190 Lists

public Node(E v, Node<E> next)

// pre: v is a value, next is a reference to remainder of list

// post: an element is constructed as the new head of list

{

data = v;

nextElement = next;

}

public Node(E v)

// post: constructs a new tail of a list with value v

{

this(v,null);

}

public Node<E> next()

// post: returns reference to next value in list

{

return nextElement;

}

public void setNext(Node<E> next)

// post: sets reference to new next value

{

nextElement = next;

}

public E value()

// post: returns value associated with this element

{

return data;

}

public void setValue(E value)

// post: sets value associated with this element

{

data = value;

}

}

When a list element is constructed, the value provided is stored away in the ob-
ject. Here, nextElement is a reference to the next element in the list. We access
the nextElement and data fields through public methods to avoid accessing
protected fields. Notice that, for the first time, we see a self-referential data
structure: the Node object has a reference to a Node. This is a feature common
to structures whose size can increase dynamically. This class is declared public

so that anyone can construct Nodes.
We now construct a new class that implements the List interface by extend-

ing the AbstractList base class. For that relation to be complete, it is necessary
to provide a complete implementation of each of the methods promised by the



9.4 Implementation: Singly Linked Lists 191

headcount

Life

Mars

on

3

Figure 9.2 A nonempty singly linked list.

headcount

0

Figure 9.3 An empty singly linked list.

interface. Failure to implement any of the methods leaves the implementation
incomplete, leaving the class abstract.

Our approach will be to maintain, in head, a reference to the first element
of the list in a protected field (Figure 9.2). This initial element references the
second element, and so on. The final element has a null-valued next reference.
If there are no elements, head contains a null reference (Figure 9.3). We also
maintain an integer that keeps track of the number of elements in the list. First,
as with all classes, we need to specify protected data and a constructor:

SinglyLinked-

List

protected int count; // list size

protected Node<E> head; // ref. to first element

public SinglyLinkedList()

// post: generates an empty list

{

head = null;

count = 0;

}

This code sets the head reference to null and the count field to 0. Notice that,
by the end of the constructor, the list is in a consistent state.

Principle 11 Every public method of an object should leave the object in a consis-

N

NW

SW
SE

NE

W

S

E

tent state.



192 Lists

What constitutes a “consistent state” depends on the particular structure, but
in most cases the concept is reasonably clear. In the SinglyLinkedList, the
constructor constructs a list that is empty.

The size-oriented methods are simply written in terms of the count identi-
fier. The size method returns the number of elements in the list.

public int size()

// post: returns number of elements in list

{

return count;

}

Recall that the isEmpty method described in the AbstractList class simply
returns whether or not the size method would return 0. There’s a great advan-
tage to calling the size method to implement isEmpty: if we ever change the
implementation, we need only change the implementation of size.

Both of these methods could avoid referencing the count field, by travers-
ing each of the next references. In this alternative code we use the analogy
of a finger referencing each of the elements in the list. Every time the finger
references a new element, we increment a counter. The result is the number of
elements. This time-consuming process is equivalent to constructing the infor-
mation stored explicitly in the count field.

public int size()

// post: returns number of elements in list

{

// number of elements we've seen in list

int elementCount = 0;

// reference to potential first element

Node<E> finger = head;

while (finger != null) {

// finger references a new element, count it

elementCount++;

// reference possible next element

finger = finger.next();

}

return elementCount;

}

Note that isEmpty does not need to change.1 It is early verification that the
interface for size helps to hide the implementation.

The decision between the two implementations has little impact on the user
of the class, as long as both implementations meet the postconditions. Since
the user is insulated from the details of the implementation, the decision can
be made even after applications have been written. If, for example, an environ-
ment is memory-poor, it might be wise to avoid the use of the count field and

1 In either case, the method isEmpty could be written more efficiently, checking a null head

reference.



9.4 Implementation: Singly Linked Lists 193

3 Life

on

Mars

Life

on

Mars

Yes!4

Figure 9.4 A singly linked list before and after the call to addFirst. Shaded value is
added to the list. The removeFirst method reverses this process and returns value.

instead traverse the list to determine the number of elements by counting them.
If, however, a machine is slow but memory-rich, then the first implementation
would be preferred. Both implementations could be made available, with the
user selecting the appropriate design, based on broad guidelines (e.g., memory
versus speed). If this trade-off does not appear dramatic, you might consider
Problem 9.10. We also discuss space–time trade-offs in more detail in Chap-
ter 10.

Let us now consider the implementation of the methods that manipulate
items at the head of the list (see Figure 9.4). First, to add an element at the
head of the list, we simply need to create a new Node that has the appropriate
value and references the very first element of the list (currently, head). The head
of the new list is simply a reference to the new element. Finally, we modify the
count variable to reflect an increase in the number of elements.

public void addFirst(E value)

// post: value is added to beginning of list

{

// note order that things happen:

// head is parameter, then assigned

head = new Node<E>(value, head);

count++;

}

Removing a value should simply perform the reverse process. We copy the
reference2 to a temporary variable where it can be held for return, and then we
simply move the head reference down the list. Once completed, the value is
returned.

2 Remember: The assignment operator does not copy the value, just the reference. If you want a
reference to a new element, you should use the new operator and explicitly create a new object to
be referenced.



194 Lists

public E removeFirst()

// pre: list is not empty

// post: removes and returns value from beginning of list

{

Node<E> temp = head;

head = head.next(); // move head down list

count--;

return temp.value();

}

Notice that removeFirst returns a value. Why not? Since addFirst “absorbs” a
value, removeFirst should do the reverse and “emit” one. Typically, the caller
will not dispose of the value, but re-insert it into another data structure. Of
course, if the value is not desired, the user can avoid assigning it a variable,
and it will be garbage-collected at some later time. Since we think of these
two operations as being inverses of each other, it is only natural to have them
balance the consumption of objects in this way.

Principle 12 Symmetry is good.
N

NW

SW
SE

NE

W

S

E

One interesting exception to Principle 12 only occurs in languages like Java,
where a garbage collector manages the recycling of dynamic memory. Clearly,
addFirst must construct a new element to hold the value for the list. On the
other hand, removeFirst does not explicitly get rid of the element. This is
because after removeFirst is finished, there are no references to the element
that was just removed. Since there are no references to the object, the garbage
collector can be assured that the object can be recycled. All of this makes the
programmer a little more lax about thinking about when memory has been
logically freed. In languages without garbage collection, a “dispose” operation
must be called for any object allocated by a new command. Forgetting to dispose
of your garbage properly can be a rude shock, causing your program to run out
of precious memory. We call this a memory leak. Java avoids all of this by
collecting your garbage for you.

There’s one more method that we provide for the sake of completeness:
getFirst. It is a nondestructive method that returns a reference to the first
value in the list; the list is not modified by this method; we just get access to
the data:

public E getFirst()

// pre: list is not empty

// post: returns first value in list

{

return head.value();

}

Next, we must write the methods that manipulate the tail of the list (see
Figure 9.5). While the interface makes these methods appear similar to those
that manipulate the head of the list, our implementation has a natural bias
against tail-oriented methods. Access through a single reference to the head



9.4 Implementation: Singly Linked Lists 195

Life

on

Mars

finger

33 Life

on

Mars

Life

on

Mars

finger

gone!

(a) (b)

(c)

4

(d)

3 Life

on

Mars

finger

Figure 9.5 The process of adding a new value (shaded) to the tail of a list. The finger

reference keeps track of progress while searching for the element whose reference must
be modified.

of the list makes it difficult to get to the end of a long singly linked list. More
“energy” will have to be put into manipulating items at the tail of the list.
Let’s see how these methods are implemented:

public void addLast(E value)

// post: adds value to end of list

{

// location for new value

Node<E> temp = new Node<E>(value,null);

if (head != null)

{

// pointer to possible tail

Node<E> finger = head;

while (finger.next() != null)

{

finger = finger.next();

}

finger.setNext(temp);

} else head = temp;



196 Lists

count++;

}

public E removeLast()

// pre: list is not empty

// post: removes last value from list

{

Node<E> finger = head;

Node<E> previous = null;

Assert.pre(head != null,"List is not empty.");

while (finger.next() != null) // find end of list

{

previous = finger;

finger = finger.next();

}

// finger is null, or points to end of list

if (previous == null)

{

// has exactly one element

head = null;

}

else

{

// pointer to last element is reset

previous.setNext(null);

}

count--;

return finger.value();

}

Each of these (complex) methods uses the finger-based list traversal tech-
nique. We reference each element of the list, starting at the top and moving
downward, until we finally reach the tail. At that point we have constructed
the desired reference to the end of the list, and we continue as we would have
in the head-manipulating methods. We have to be aware of one slight problem
that concerns the very simplest case—when the list is empty. If there are no
elements, then finger never becomes non-null, and we have to write special
code to manipulate the head reference.

To support the add and remove methods of the Structure (and thus List)
interface, we had them call the addLast and removeLast methods, respectively.
Given their expense, there might be a good argument to have them manipulate
values at the head of the list, but that leads to an inconsistency with other
potential implementations. The correct choice in design is not always obvious.

Several methods potentially work in the context of the middle of lists—
including contains and remove. Here, the code becomes particularly tricky
because we cannot depend on lists having any values, and, for remove, we must
carefully handle the boundary cases—when the elements are the first or last
elements of the list. Errors in code usually occur at these difficult points, so it is
important to make sure they are tested.



9.4 Implementation: Singly Linked Lists 197

Principle 13 Test the boundaries of your structures and methods.
N

NW

SW
SE

NE

W

S

EHere is the code for these methods:

public boolean contains(E value)

// pre: value is not null

// post: returns true iff value is found in list

{

Node<E> finger = head;

while (finger != null &&

!finger.value().equals(value))

{

finger = finger.next();

}

return finger != null;

}

public E remove(E value)

// pre: value is not null

// post: removes first element with matching value, if any

{

Node<E> finger = head;

Node<E> previous = null;

while (finger != null &&

!finger.value().equals(value))

{

previous = finger;

finger = finger.next();

}

// finger points to target value

if (finger != null) {

// we found element to remove

if (previous == null) // it is first

{

head = finger.next();

} else { // it's not first

previous.setNext(finger.next());

}

count--;

return finger.value();

}

// didn't find it, return null

return null;

}

In the contains method we call the value’s equals method to test to see if the
values are logically equal. Comparing the values with the == operator checks to
see if the references are the same (i.e., that they are, in fact, the same object).
We are interested in finding a logically equal object, so we invoke the object’s
equals method.



198 Lists

previous

finger

Life

on

Mars

previous

finger

Life

on

Mars

(b)(a)

(c) (d)

previous

finger

Life

on

Mars

previous

finger

Life

on

Mars

Figure 9.6 The relation between finger and previous. The target element is (a) the
head of the list, (b) in the middle, (c) at the tail, or (d) not present.



9.4 Implementation: Singly Linked Lists 199

Some fancy reference manipulation is needed in any routine that removes
an element from the list. When we find the target value, the finger variable
has moved too far down to help with removing the element. By the time finger

references the element holding the target value, we lose the reference to the pre-
vious element—precisely the element that needs to have its next reference reset
when the value is removed. To avoid this difficulty, we keep another reference,
local to the particular method, that is either null or references the element just
before finger. When (and if) we find a value to be removed, the element to
be fixed is referenced by previous (Figure 9.6). Of course, if previous is null,
we must be removing the first element, and we update the head reference. All
of this can be very difficult to write correctly, which is another good reason to
write it carefully once and reuse the code whenever possible (see Principle 2,
Free the future: Reuse code).

One final method with subtle behavior is the clear method. This removes
all the elements from the list. In Java, this is accomplished by clearing the
reference to the head and adjusting the list size:

public void clear()

// post: removes all elements from list

{

head = null;

count = 0;

}

All that happens is that head stops referencing the list. Instead, it is explicitly
made to reference nothing. What happens to the elements of the list? When
the garbage collector comes along, it notices that the first element of the former
list is not referenced by anything—after all it was only referenced by head be-
fore. So, the garbage collector collects that first element as garbage. It is pretty
easy to see that if anything is referenced only by garbage, it is garbage. Thus, You are what

references you.the second element (as well as the value referenced by the first element) will
be marked as garbage, and so forth. This cascading identification of garbage
elements is responsible for recycling all the elements of the list and, potentially,
the Objects they reference. (If the list-referenced objects are referenced outside
of the list, they may not be garbage after all!)

We have left to this point the implementation of general methods for sup-
porting indexed versions of add and remove. These routines insert and remove
values found at particular offsets from the beginning of this list. Careful in-
spection of the AbstractList class shows that we have chosen to implement
addFirst and similar procedures in terms of the generic add and remove rou-
tines. We have, however, already seen quite efficient implementations of these
routines. Instead, we choose to make use of the end-based routines to handle
special cases of the generic problem.

Here, we approach the adding of a value to the middle of a list. An index
is passed with a value and indicates the desired index of the value in the aug-
mented list. A finger keeps track of our progress in finding the correct location.



200 Lists

public void add(int i, E o)

// pre: 0 <= i <= size()

// post: adds ith entry of list to value o

{

Assert.pre((0 <= i) && (i <= size()),

"Index in range.");

if (i == size()) {

addLast(o);

} else if (i == 0) {

addFirst(o);

} else {

Node<E> previous = null;

Node<E> finger = head;

// search for ith position, or end of list

while (i > 0)

{

previous = finger;

finger = finger.next();

i--;

}

// create new value to insert in correct position

Node<E> current =

new Node<E>(o,finger);

count++;

// make previous value point to new value

previous.setNext(current);

}

}

Some thought demonstrates that the general code can be considerably simpli-
fied if the boundary cases (adding near the ends) can be handled directly. By
handling the head and tail cases we can be sure that the new value will be in-
serted in a location that has a non-null previous value, as well as a non-null
next value. The loop is simpler, then, and the routine runs considerably faster.

A similar approach is used in the indexed remove routine:

public E remove(int i)

// pre: 0 <= i < size()

// post: removes and returns object found at that location

{

Assert.pre((0 <= i) && (i < size()),

"Index in range.");

if (i == 0) return removeFirst();

else if (i == size()-1) return removeLast();

Node<E> previous = null;

Node<E> finger = head;

// search for value indexed, keep track of previous

while (i > 0)

{

previous = finger;



9.5 Implementation: Doubly Linked Lists 201

finger = finger.next();

i--;

}

// in list, somewhere in middle

previous.setNext(finger.next());

count--;

// finger's value is old value, return it

return finger.value();

}

Exercise 9.1 Implement the indexed set and get routines. You may assume the
existence of setFirst, setLast, getFirst, and getLast.

We now consider another implementation of the list interface that makes
use of two references per element. Swoon!

9.5 Implementation: Doubly Linked Lists

In Section 9.4, we saw indications that some operations can take more “energy”
to perform than others, and expending energy takes time. Operations such as
modifying the tail of a singly linked list can take significantly longer than those
that modify the head. If we, as users of lists, expect to modify the tail of the list
frequently, we might be willing to make our code more complex, or use more
space to store our data structure if we could be assured of significant reductions
in time spent manipulating the list.

We now consider an implementation of a doubly linked list. In a doubly
linked list, each element points not only to the next element in the list, but also
to the previous element (see Figure 9.7). The first and last elements, of course,
have null previousElement and nextElement references, respectively.

In addition to maintaining a second reference within each element, we will
also consider the addition of a reference to the tail of the list (see Figure 9.8).
This one reference provides us direct access to the end of the list and has the
potential to improve the addLast and removeLast methods.

A cursory glance at the resulting data structure identifies that it is more
symmetric with respect to the head and tail of the list. Writing the tail-related
methods can be accomplished by a simple rewriting of the head-related meth-
ods. Symmetry is a powerful concept in the design of complex structures; if
something is asymmetric, you should step back and ask yourself why.

Principle 14 Question asymmetry.
N

NW

SW
SE

NE

W

S

E

We begin by constructing a DoublyLinkedNode structure that parallels the
Node. The major difference is the addition of the previous reference that refers
to the element that occurs immediately before this element in the doubly linked
list. One side effect of doubling the number of references is that we duplicate
some of the information.



202 Lists

headcount tail

3

Rhoda

value np

Rhonda

Rhory

Figure 9.7 A nonempty doubly linked list.

headcount

0

tail

Figure 9.8 An empty doubly linked list.

Rhoda

Rhonda

Figure 9.9 Rhonda’s next reference duplicates Rhoda’s previous reference.



9.5 Implementation: Doubly Linked Lists 203

If we look at two adjacent elements Rhonda and Rhoda in a doubly linked
list, their mutual adjacency is recorded in two references (Figure 9.9): Rhonda’s Say that twice!
nextElement reference refers to Rhoda, while Rhoda’s previousElement refer-
ence refers to Rhonda.Whenever one of the references is modified, the other
must be modified also. When we construct a new DoublyLinkedNode, we set
both the nextElement and previousElement references. If either is non-null,
a reference in the newly adjacent structure must be updated. If we fail to do
this, the data structure is left in an inconsistent state.

Here’s the code:

DoublyLinked-

Node

protected E data;

protected DoublyLinkedNode<E> nextElement;

protected DoublyLinkedNode<E> previousElement;

public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,

DoublyLinkedNode<E> previous)

{

data = v;

nextElement = next;

if (nextElement != null)

nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null)

previousElement.nextElement = this;

}

public DoublyLinkedNode(E v)

// post: constructs a single element

{

this(v,null,null);

}

Now we construct the class describing the doubly linked list, proper. As with
any implementation of the list interface, it is necessary for our new Doubly-

LinkedList to provide code for each method not addressed in the AbstractList
class. The constructor simply sets the head and tail references to null and the
count to 0—the state identifying an empty list:

DoublyLinked-

List

protected int count;

protected DoublyLinkedNode<E> head;

protected DoublyLinkedNode<E> tail;

public DoublyLinkedList()

// post: constructs an empty list

{

head = null;

tail = null;

count = 0;

}



204 Lists

Many of the fast methods of SinglyLinkedLists, like addFirst, require
only minor modifications to maintain the extra references.

public void addFirst(E value)

// pre: value is not null

// post: adds element to head of list

{

// construct a new element, making it head

head = new DoublyLinkedNode<E>(value, head, null);

// fix tail, if necessary

if (tail == null) tail = head;

count++;

}

The payoff for all our extra references comes when we implement methods like
those modifying the tail of the list:

public void addLast(E value)

// pre: value is not null

// post: adds new value to tail of list

{

// construct new element

tail = new DoublyLinkedNode<E>(value, null, tail);

// fix up head

if (head == null) head = tail;

count++;

}

public E removeLast()

// pre: list is not empty

// post: removes value from tail of list

{

Assert.pre(!isEmpty(),"List is not empty.");

DoublyLinkedNode<E> temp = tail;

tail = tail.previous();

if (tail == null) {

head = null;

} else {

tail.setNext(null);

}

count--;

return temp.value();

}

Here, it is easy to see that head- and tail-based methods are textually similar,
making it easier to verify that they are written correctly. Special care needs to be
taken when these procedures handle a list that newly becomes either empty or
not empty. In these cases, both the head and tail references must be modified
to maintain a consistent view of the list. Some people consider the careful
manipulation of these references so time-consuming and error-prone that they
dedicate an unused element that permanently resides at the head of the list. It



9.5 Implementation: Doubly Linked Lists 205

is never seen or modified by the user, and it can simplify the code. Here, for
example, are the addLast and removeLast methods for this type of list:

public void addLast(E value)

{

// construct new element

tail = new DoublyLinkedNode<E>(value, null, tail);

count++;

}

public E removeLast()

{

Assert.pre(!isEmpty(),"List is not empty.");

DoublyLinkedNode<E> temp = tail;

tail = tail.previous();

tail.setNext(null);

count--;

return temp.value();

}

The reserved-element technique increases the amount of space necessary to
store a DoublyLinkedList by the size of a single element. The choice is left
to the implementor and is another example of a time–space trade-off.

Returning to our original implementation, we note that remove is simplified
by the addition of the previous reference:

public E remove(E value)

// pre: value is not null. List can be empty

// post: first element matching value is removed from list

{

DoublyLinkedNode<E> finger = head;

while (finger != null &&

!finger.value().equals(value))

{

finger = finger.next();

}

if (finger != null)

{

// fix next field of element above

if (finger.previous() != null)

{

finger.previous().setNext(finger.next());

} else {

head = finger.next();

}

// fix previous field of element below

if (finger.next() != null)

{

finger.next().setPrevious(finger.previous());

} else {



206 Lists

tail = finger.previous();

}

count--; // fewer elements

return finger.value();

}

return null;

}

Because every element keeps track of its previous element, there is no difficulty
in finding it from the element that is to be removed. Of course, once the removal
is to be done, several references need to be updated, and they must be assigned
carefully to avoid problems when removing the first or last value of a list.

The List interface requires the implementation of two index-based methods
called indexOf and lastIndexOf. These routines return the index associated
with the first (or last) element that is equivalent to a particular value. The
indexOf method is similar to the implementation of contains, but it returns
the index of the element, instead of the element itself. For DoublyLinkedLists,
the lastIndexOf method performs the same search, but starts at the tail of the
list. It is, essentially, the mirror image of an indexOf method.

public int lastIndexOf(E value)

// pre: value is not null

// post: returns the (0-origin) index of value,

// or -1 if value is not found

{

int i = size()-1;

DoublyLinkedNode<E> finger = tail;

// search for last matching value, result is desired index

while (finger != null && !finger.value().equals(value))

{

finger = finger.previous();

i--;

}

if (finger == null)

{ // value not found, return indicator

return -1;

} else {

// value found, return index

return i;

}

}

9.6 Implementation: Circularly Linked Lists

Careful inspection of the singly linked list implementation identifies one seem-
ingly unnecessary piece of data: the final reference of the list. This reference is
always null, but takes up as much space as any varying reference. At the same
time, we were motivated to add a tail reference in the doubly linked list to help



9.6 Implementation: Circularly Linked Lists 207

count

3

tail

"head"

muffins

donuts

bagels

Figure 9.10 A nonempty circularly linked list.

us access either end of the list with equal ease. Perhaps we could use the last
reference as the extra reference we need to keep track of one of the ends! The tail wags

the dog.Here’s the technique: Instead of keeping track of both a head and a tail
reference, we explicitly keep only the reference to the tail. Since this element
would normally have a null reference, we use that reference to refer, implicitly,
to the head (see Figure 9.10). This implementation marries the speed of the
DoublyLinkedList with the space needed by the SinglyLinkedList. In fact,
we are able to make use of the Node class as the basis for our implementation.
To build an empty list we initialize the tail to null and the count to 0:

CircularListprotected Node<E> tail;

protected int count;

public CircularList()

// pre: constructs a new circular list

{

tail = null;

count = 0;

}

Whenever access to the head of the list is necessary, we use tail.next(),
instead.3 Thus, methods that manipulate the head of the list are only slight
modifications of the implementations we have seen before for singly and doubly
linked lists. Here is how we add a value to the head of the list:

public void addFirst(E value)

// pre: value non-null

// post: adds element to head of list

{

3 This longhand even works in the case when there is exactly one element, since its next reference
points to itself.



208 Lists

Node<E> temp = new Node<E>(value);

if (tail == null) { // first value added

tail = temp;

tail.setNext(tail);

} else { // element exists in list

temp.setNext(tail.next());

tail.setNext(temp);

}

count++;

}

Now, to add an element to the end of the list, we first add it to the head, and
then “rotate” the list by moving the tail down the list. The overall effect is to
have added the element to the tail!

public void addLast(E value)

// pre: value non-null

// post: adds element to tail of list

{

// new entry:

addFirst(value);

tail = tail.next();

}

The “recycling” of the tail reference as a new head reference does not solve
all our problems. Careful thought will demonstrate that the removal of a value
from the tail of the list remains a difficult problem. Because we only have
access to the tail of the list, and not the value that precedes it, it is difficult
to remove the final value. To accomplish this, we must iterate through the
structure, looking for an element that refers to the same element as the tail
reference.

public E removeLast()

// pre: !isEmpty()

// post: returns and removes value from tail of list

{

Assert.pre(!isEmpty(),"list is not empty.");

Node<E> finger = tail;

while (finger.next() != tail) {

finger = finger.next();

}

// finger now points to second-to-last value

Node<E> temp = tail;

if (finger == tail)

{

tail = null;

} else {

finger.setNext(tail.next());

tail = finger;

}



9.7 Implementation: Vectors 209

count--;

return temp.value();

}

There are two approaches to improving the performance of this operation. First,
we could reconsider the previous links of the doubly linked list. There’s not
much advantage to doing this, and if we did, we could then keep the head
reference instead of the tail reference. The second technique is to point instead
to the element before the tail; that is the subject of Problem 9.11.

9.7 Implementation: Vectors

Careful inspection of the List interface makes it clear that the Vector class
actually implements the List interface. Thus, we can augment the Vector

definition with the phrase implements List.
With such varied implementations, it is important to identify the situations

where each of the particular implementations is most efficient. As we had noted
before, the Vector is a good random access data structure. Elements in the
middle of the Vector can be accessed with little overhead. On the other hand,
the operations of adding or removing a value from the front of the Vector are
potentially inefficient, since a large number of values must be moved in each
case.

In contrast, the dynamically allocated lists manipulate the head of the list
quite efficiently, but do not allow the random access of the structure without a
significant cost. When the tail of a dynamically allocated list must be accessed
quickly, the DoublyLinkedList or CircularList classes should be used.

Exercise 9.2 In Exercise 6.3 (see page 144) we wrote a version of insertionSort
that sorts Vectors. Follow up on that work by making whatever modification
would be necessary to have the insertionSort work on any type of List.

9.8 List Iterators

The observant reader will note that all classes that implement the Structure

class (see page 24) are required to provide an iterator method. Since the
List interface extends the Structure interface, all Lists are required to im-
plement an iterator method. We sketch the details of an Iterator over
SinglyLinkedLists here. Implementations of other List-based iterators are
similar.

When implementing the VectorIterator it may be desirable to use only
methods available through the Vector’s public interface to access the Vector’s
data. Considering the List interface—an interface biased toward manipulating
the ends of the structure—it is not clear how a traversal might be accomplished
without disturbing the underlying List. Since several Iterators may be active
on a single List at a time, it is important not to disturb the host structure.



210 Lists

As a result, efficient implementations of ListIterators must make use of the
protected fields of the List object.

The SinglyLinkedListIterator implements all the standard Iterator meth-
ods. To maintain its positioning within the List, the iterator maintains two
references: the head of the associated list and a reference to the current node.
The constructor and initialization methods appear as follows:

SinglyLinked-

ListIterator

protected Node<E> current;

protected Node<E> head;

public SinglyLinkedListIterator(Node<E> t)

// post: returns an iterator that traverses a linked list

{

head = t;

reset();

}

public void reset()

// post: iterator is reset to beginning of traversal

{

current = head;

}

When called by the SinglyLinkedList’s iterator method, the protected head

reference is passed along. The constructor caches away this value for use in
reset. The reset routine is then responsible for initializing current to the
value of head. The Iterator is able to refer to the Nodes because both structures
are in the same package.

The value-returning routines visit each element and “increment” the current
reference by following the next reference:

protected Node<E> current;

protected Node<E> head;

public boolean hasNext()

// post: returns true if there is more structure to be viewed:

// i.e., if value (next) can return a useful value.

{

return current != null;

}

public E next()

// pre: traversal has more elements

// post: returns current value and increments iterator

{

E temp = current.value();

current = current.next();

return temp;

}



9.9 Conclusions 211

The traversal is finished when the current reference “falls off” the end of the
List and becomes null.

Observe that the Iterator is able to develop references to values that are
not accessible through the public interface of the underlying List structure.
While it is of obvious utility to access the middle elements of the List, these
references could be used to modify the associated List structure. If the objects
referred to through the Iterator are modified, this underlying structure could
become corrupted. One solution to the problem is to return copies or clones of
the current object, but then the references returned are not really part of the
List. The best advice is to think of the values returned by the Iterator as
read-only.

Principle 15 Assume that values returned by iterators are read-only.

N

NW

SW
SE

NE

W

S

E

9.9 Conclusions

In this chapter we have developed the notion of a list and three different im-
plementations. One of the features of the list is that as each of the elements is
added to the list, the structure is expanded dynamically, using dynamic mem-
ory. To aid in keeping track of an arbitrarily large number of chunks of dynamic
memory, we allocate, with each chunk, at least one reference for keeping track
of logically nearby memory.

Although the description of the interface for lists is quite detailed, none of
the details of any particular implementation show through the interface. This
approach to designing data structures makes it less possible for applications to
depend on the peculiarities of any particular implementation, making it more
likely that implementations can be improved without having to reconsider indi-
vidual applications.

Finally, as we investigated each of the three implementations, it became
clear that there were certain basic trade-offs in good data structure design. In-
creased speed is often matched by an increased need for space, and an increase
in complexity makes the code less maintainable. We discuss these trade-offs in
more detail in upcoming chapters.



212 Lists

Self Check Problems

Solutions to these problems begin on page 446.

9.1 What are the essential distinctions between the List types and the
Vector implementation?

9.2 Why do most List implementations make use of one or more references
for each stored value?

9.3 How do we know if a structure qualifies as a List?

9.4 If class C extends the SinglyLinkedList class, is it a SinglyLinkedList?
Is it a List? Is it an AbstractList? Is it a DoublyLinkedList?

9.5 The DoublyLinkedList class has elements with two pointers, while the
SinglyLinkedList class has elements with one pointer. Is DoublyLinkedList
a SinglyLinkedList with additional information?

9.6 Why do we have a tail reference in the DoublyLinkedList?

9.7 Why don’t we have a tail reference in the SinglyLinkedList?

9.8 The ListVector implementation of a List is potentially slow? Why
might we use it, in any case?

9.9 The AbstractList class does not make use of any element types or
references. Why?

9.10 If you use the add method to add an element to a List, to which end
does it get added?

9.11 The get and set methods take an integer index. Which element of the
list is referred to by index 1?

Problems

Solutions to the odd-numbered problems begin on page 471.

9.1 When considering a data structure it is important to see how it works in
the boundary cases. Given an empty List, which methods may be called without
violating preconditions?

9.2 Compare the implementation of getLast for each of the three List

types we have seen in this chapter.

9.3 From within Java programs, you may access information on the Web
using URL’s (uniform resource locators). Programmers at MindSlave software
(working on their new NetPotato browser) would like to keep track of a poten-
tially large bookmark list of frequently visited URL’s. It would be most useful
if they had arbitrary access to the values saved within the list. Is a List an
appropriate data structure? (Hint: If not, why?)

9.4 Write a List method, equals, that returns true exactly when the el-
ements of two lists are pair-wise equal. Ideally, your implementation should
work for any List implementation, without change.



9.9 Conclusions 213

9.5 Write a method of SinglyLinkedList, called reverse, that reverses the
order of the elements in the list. This method should be destructive—it should
modify the list upon which it acts.
9.6 Write a method of DoublyLinkedList, called reverse, that reverses the
order of the elements in the list. This method should be destructive.
9.7 Write a method of CircularList, called reverse, that reverses the
order of the element in the list. This method should be destructive.
9.8 Each of the n references in a singly linked list are needed if we wish
to remove the final element. In a doubly linked list, are each of the addi-
tional n previous references necessary if we want to remove the tail of the
list in constant time? (Hint: What would happen if we mixed Nodes and
DoublyLinkedNodes?)
9.9 Design a method that inserts an object into the middle of a CircularList.
9.10 Which implementation of the size and isEmpty methods would you
use if you had the potential for a million-element list. (Consider the problem
of keeping track of the alumni for the University of Michigan.) How would you
choose if you had the potential for a million small lists. (Consider the problem
of keeping track of the dependents for each of a million income-tax returns.)
9.11 One way to make all the circular list operations run quickly is to keep
track of the element that points to the last element in the list. If we call this
penultimate, then the tail is referenced by penultimate.next, and the head
by penultimate.next.next. What are the disadvantages of this?
9.12 Suppose we read n integers 1, 2, . . . , n from the input, in order. Flipping
a coin, we add each new value to either the head or tail of the list. Does this
shuffle the data? (Hint: See Problem 6.18.)
9.13 Measure the performance of addFirst, remove(Object), and remove-

Last for each of the three implementations (you may include Vectors, if you
wish). Which implementations perform best for small lists? Which implemen-
tations perform best for large lists?
9.14 Consider the implementation of an insertionSort that works on Lists.
(See Exercises 6.3 and 9.2.) What is the worst-case performance of this sort?
Be careful.
9.15 Implement a recursive version of the size method for SinglyLinked-
Lists. (Hint: A wrapper may be useful.)
9.16 Implement a recursive version of the contains method for Singly-

LinkedLists.
9.17 Suppose the add of the Unique program is replaced by addFirst and the
program is run on (for example) the first chapter of Mark Twain’s Tom Sawyer.
Why does the modified program run as much as 25 percent slower than the
program using the add (i.e., addLast) method? (Hint: Mark Twain didn’t write
randomly.)
9.18 Describe an implementation for an iterator associated with Circular-

Lists.



9.10 Laboratory: Lists with Dummy Nodes

Objective. To gain experience implementing List-like objects.

Discussion. Anyone attempting to understand the workings of a doubly linked
list understands that it is potentially difficult to keep track of the references. One
of the problems with writing code associated with linked structures is that there
are frequently boundary cases. These are special cases that must be handled
carefully because the “common” path through the code makes an assumption
that does not hold in the special case.

Take, for example, the addFirst method for DoublyLinkedLists:

public void addFirst(E value)

// pre: value is not null

// post: adds element to head of list

{

// construct a new element, making it head

head = new DoublyLinkedNode<E>(value, head, null);

// fix tail, if necessary

if (tail == null) tail = head;

count++;

}

The presence of the if statement suggests that sometimes the code must reas-
sign the value of the tail reference. Indeed, if the list is empty, the first element
must give an initial non-null value to tail. Keeping track of the various special
cases associated with a structure can be very time consuming and error-prone.

One way that the complexity of the code can be reduced is to introduce
dummy nodes. Usually, there is one dummy node associated with each external
reference associated with the structure. In the DoublyLinkedList, for example,
we have two references (head and tail); both will refer to a dedicated dummy
node:

Rhoda

Rhory

Rhonda

headcount tail

3

value p n



216 Lists

These nodes appear to the code to be normal elements of the list. In fact, they
do not hold any useful data. They are completely hidden by the abstraction of
the data structure. They are transparent.

Because most of the boundary cases are associated with maintaining the
correct values of external references and because these external references are
now “hidden” behind their respective dummy nodes, most of the method code
is simplified. This comes at some cost: the dummy nodes take a small amount
of space, and they must be explicitly stepped over if we work at either end of
the list. On the other hand, the total amount of code to be written is likely
to be reduced, and the running time of many methods decreases if the special
condition testing would have been expensive.

Procedure. In this lab we will extend the DoublyLinkedList, building a new
class, LinkedList, that makes use of two dummy nodes: one at the head of the
list, and one at the end.

You should begin taking a copy of the LinkedList.java starter file. This

LinkedList

file simply declares LinkedList to be an extension of the structure package’s
DoublyLinkedList class. The code associated with each of the existing methods
is similar to the code from DoublyLinkedList. You should replace that code
with working code that makes use of two dummy nodes:

1. First, recall that the three-parameter constructor for DoublyLinkedList-
Elements takes a value and two references—the nodes that are to be next

and previous to this new node. That constructor will also update the
next and previous nodes to point to the newly constructed node. You
may find it useful to use the one-parameter constructor, which builds a
node with null next and previous references.

2. Replace the constructor for the LinkedList. Instead of constructing head

and tail references that are null, you should construct two dummy
nodes; one node is referred to by head and the other by tail. These
dummy nodes should point to each other in the natural way. Because these
dummy nodes replace the null references of the DoublyLinkedList class,
we will not see any need for null values in the rest of the code. Amen.

3. Check and make necessary modifications to size, isEmpty, and clear.

4. Now, construct two important protected methods. The method insert-

After takes a value and a reference to a node, previous. It inserts a new
node with the value value that directly follows previous. It should be
declared protected because we are not interested in making it a formal
feature of the class. The other method, remove, is given a reference to a
node. It should unlink the node from the linked list and return the value
stored in the node. You should, of course, assume that the node removed
is not one of the dummy nodes. These methods should be simple with no
if statements.



9.10 Laboratory: Lists with Dummy Nodes 217

5. Using insertAfter and remove, replace the code for addFirst, addLast,
getFirst, getLast, removeFirst, and removeLast. These methods should
be very simple (perhaps one line each), with no if statements.

6. Next, replace the code for the indexed versions of methods add, remove,
get, and set. Each of these should make use of methods you have already
written. They should work without any special if statements.

7. Finally, replace the versions of methods indexOf, lastIndexOf, and contains

(which can be written using indexOf), and the remove method that takes
an object. Each of these searches for the location of a value in the list
and then performs an action. You will find that each of these methods is
simplified, making no reference to the null reference.

Thought Questions. Consider the following questions as you complete the lab:

1. The three-parameter constructor for DoublyLinkedNodes makes use of
two if statements. Suppose that you replace the calls to this construc-
tor with the one-parameter constructor and manually use setNext and
setPrevious to set the appropriate references. The if statements disap-
pear. Why?

2. The contains method can be written making use of the indexOf method,
but not the other way around. Why?

3. Notice that we could have replaced the method insertAfter with a sim-
ilar method, insertBefore. This method inserts a new value before the
indicated node. Some changes would have to be made to your code. There
does not appear, however, to be a choice between versions of remove. Why
is this the case? (Hint: Do you ever pass a dummy node to remove?)

4. Even though we don’t need to have the special cases in, for example, the
indexed version of add, it is desirable to handle one or more cases in a
special way. What are the cases, and why is it desirable?

5. Which file is bigger: your final result source or the original?

Notes:


